HNTES Projects 1 and 2

Zhenzhen Yan, Chris Tracy, Malathi Veeraraghavan University of Virginia and ESnet Jan 12-13, 2012

Please send feedback/comments to: mv5g@virginia.edu, ctracy@es.net

Acknowledgment: Thanks to the US DOE ASCR program office for UVA grants DE-SC002350 and DE-SC0007341 and ESnet grant DE-AC02-05CH11231

Outline

- Brief history of design work under HNTES project 1 since last DOE PI Meeting in Oct. 2010
- HNTES project 2 work items
 - Completed work: ESnet (1Q Yr 1)
 - ESnet start date: Oct. 1, 2011
 - Planned work: UVA and ESnet
 - · UVA start date: Jan. 15, 2012

Brief history since Oct. 2010

- · Reported in Oct. 2010 meeting
 - Developed flow analysis algorithms for identifying long duration flows
 - Analyzed Internet2 data (as ESnet data was unavailable to UVA)
 - Demonstrated HNTES 1.0 software
 - Flow Monitoring Module (packets mirrored to this module)
 - IDCIM (IDC interface module)
 - · Monitored Flow Data Base (MFDB) MySQL
 - Focus: dynamic circuit setup

HNTES 1.0 architecture

- 1. Offline flow analysis and populate MFDB
- 2. RCIM reads MFDB and programs routers to port mirror packets from MFDB flows
- 3. Router mirrors packets to FMM
- 4. FMM asks IDICM to initiate circuit setup as soon as it receives packets from the router corresponding to one of the MFDB flows
- 5. IDCIM communicates with IDC, which sets up circuit and PBR for flow redirection to newly established circuit

Large size not long duration

- Nov. 2010 May 2011
 - Changed focus to identifying large sized flows, not long duration flows
 - Why? Because I2 NetFlow analysis showed long duration flows had relatively low rates (33 Mbps)
 - Such flows are not likely to have a significant negative impact on generalpurpose flows

Heavy-hitter flows

Dimensions

- size (bytes): elephant and mice
- rate: cheetah and snail
- duration: tortoise and dragonfly
- burstiness: porcupine (alpha) and stingray (beta)

Kun-chan Lan and John Heidemann, A measurement study of correlations of Internet flow characteristics. *ACM Comput. Netw.* 50, 1 (January 2006), 46-62.

Offline not online circuit prov.

- Nov. 2010 May 2011
 - But large sized flows were found to be mostly of short duration
 - As will be reported in the next talk
 - Both NetFlow and GridFTP logs
 - Hence changed to offline circuit provisioning and PBR configuration

Three HNTES tasks

HNTES 1.0 vs. HNTES 2.0

	HNTES 1.0 (tested on ANI testbed)	HNTES 2.0
Dimension of heavy- hitter flow	Duration	Size/min
Circuit granularity	Circuit for each flow	Circuit carries multiple flows
Heavy hitter flow identification	Online	Offline
Circuit provisioning	Online	Offline
Flow redirection (PBRconfiguration)	Online	Offline

Focus: DYNAMIC (or online) circuit setup

Can use circuits only for long-DURATION flows

UVA-ESnet collaboration started in Mar. 2011

- Feb. 2011: MV attended ESCC meeting and DOE Terabits workshop
 - Steve Cotter's talk on need for science flow redirection
 - Steve said Chris was working on identifying science flows
- March 2011: started collaboration with Chris
- First step:
 - Determine if NetFlow data inspite of 1-1000 sampling is sufficient for offline flow identification of elephant flows
 - Findings presented in first talk
 - Conclusion: NetFlow data is sufficient
 - Hence Flow Monitoring Module (FMM) was dropped

HNTES 2.0: Large sized flow identification algorithm

- Ideally, flow size = total number of bytes sent per flow (5-tuple identifier)
- But since ports are ephemeral, cannot use for offline flow identification
- · Redefined "flow": src/dst IP addresses only
- Algorithm
 - Add sizes for a flow from all flow records in say one day
 - Flows with total size > threshold (e.g. 1GB) are monitored
- Combine persistency with size to decide which flow identifiers to include in PBR table

Three events of interest

- May 2011: submitted HNTES Project 2 proposal to DOE
 - At this point, focus: size and offline
- June 2011:
 - Presented a talk on HNTES to ESnet
 - Attendees: Evangelos, Brian, Chin, Eli, Inder, Joe B., Joe M., and Jon
- · Aug. 2011:
 - Zhenzhen Yan defended PhD proposal
 - Literature search

What is an "elephant" flow?

- ESnet talk attendees noted:
 - Why 1 day for size aggregation and not 1 hour?
 - Why /32 src/dst IP addr. and not /24?
- · Literature:
 - Lan and Heidemann: elephants: total number of bytes in a flow exceeds mean + 3 SD; (total duration is required)
 - Willinger 2005: elephants are the top-ranked flows that send the most number of bytes within 1-minute intervals (once an elephant, always an elephant)
 - Baraniuk 2011: defined alpha flows as flows that exceed a (large) threshold of bytes transmitted in each T-sec bin. Threshold is set as mean + few SD

Elephant vs. alpha

- Heidemann's data analysis:
 - 68% of porcupine flows are elephants (i.e., bursty flows are also large sized)
 - only 19% of elephants are porcupines
- · HNTES:
 - adopted Baraniuk's alpha flow definition with the exception that the threshold is set independent of traffic (e.g., 1GB in 1 min)
- · Why?
 - Baraniuk and Heidemann: alpha flows are caused by transfers of large files over fast links
 - Baraniuk: traffic bursts typically arise from just a few high-volume connections that dominate all others - such dominating connections are called alpha traffic.

Change dimension of heavy-hitter flows

- Change from size to burstiness
 - size (bytes): elephant and mice
 - rate: cheetah and snail
 - duration: tortoise and dragonfly
 - burstiness: porcupine (alpha) and stingray (beta)
- · Relation of alpha flows
 - An alpha flow is defined as one in which the bytes generated ≥ H (threshold) in a specified small time interval (e.g., 1 minute: NetFlow active timeout) anytime during its lifetime
 - if $H = 1 GB \Rightarrow$ throughput exceeds 133 Mbps for any 1 min in lifetime

HNTES 2.0 June 2011-now

- alpha flow identification
 - as will be presented in the next talk
 - NetFlow data analysis
- GridFTP analysis

ESnet/UVA joint work

· Process:

- UVA provides NetFlow analysis code + anonymization code to ESnet
- ESnet executes this code on ESnet NetFlow data, and sends anonymized results to UVA
- UVA conducts further analysis, generates graphs for papers

· Analyses:

- NetFlow experiments/analysis: Mar-Apr. 2011
- GridFTP/NetFlow correlation analysis: Apr.-May 2011
- Size based NERSC PE router NetFlow analysis: June 2011
- alpha flow ESnet PE router NetFlow analysis: July 2011-Jan. 2012

Papers/presentations

- · Paper at OFC, March 2011
- Heterogeneous net. w/s, March 2011
- I2 Spring member meeting, Apr. 2011
- · IEEE Comm. Mag. spl. issue: May 2011
- Talk to ESnet: June 2011
- · ICC 2011 paper submission: Sep. 2011
- Traffic engr paper for IEEE HPSR, Jan. 2012 (under prep.)

Outline

- Brief history of design work under HNTES project 1 since last DOE PI Meeting in Oct. 2010
- > HNTES project 2 work items
 - Completed work: ESnet (1Q Yr 1)
 - ESnet start date: Oct. 1, 2011
 - Planned work: UVA and ESnet
 - · UVA start date: Jan. 15, 2012

HNTES project 2 ESnet 1Q work

- Completed work items
 - Executed alpha flow identification algorithms on 7 months NetFlow data from ESnet site PE router
 - Executed general-purpose flow identification algorithms on same set
 - Collaborated with UVA on two papers

HNTES project 2 Planned work

- HNTES 3.0
 - online flow identification
 - Faster NetFlow data retrieval
 - FMM with 0-length packet mirroring
 - HNTES 4.0
 - end-host assisted flow indentification
 - need PerfSONAR to find route and send independent messages to HNTES in intermediate domains
 - HNTES design for an integrated network
 - unlike ESnet4 with separate IP-routed and SDN networks
 - rate-unlimited MPLS LSPs and third queue concepts
 - Other types of heavy-hitter flows
 - Experiment with OpenFlow on ANI 100G prototype/LIMAN

Breakdown of work

· UVA

- Algorithm design and coding
- Data analysis
- HNTES software prototyping
- ESnet
 - Review/improve designs
 - Execute scripts on ESnet data
- Both
 - ANI 100G prototype & LIMAN testing

Summary

- HNTES 2.0 offline design appears feasible
- HNTES 3.0 online design challenging
- HNTES 4.0 end-host assisted (builds on Lambdastation/Terapaths)
- Need to design solution for deploying HNTES in an integrated network

